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Abstract

Awell-established numerical approach to solve the Navier–Stokes equations for incompressible �uids
is Chorin’s projection method [1], whereby the �uid velocity is explicitly updated, and then an elliptic
problem for the pressure is solved, which is used to orthogonally project the velocity �eld to maintain
the incompressibility constraint. In this paper, we develop a mathematical correspondence between
Newtonian �uids in the incompressible limit and hypo-elastoplastic solids in the slow, quasi-static
limit. Using this correspondence, we formulate a new �xed-grid, Eulerian numerical method for
simulating quasi-static hypo-elastoplastic solids, whereby the stress is explicitly updated, and then an
elliptic problem for the velocity is solved, which is used to orthogonally project the stress to maintain
the quasi-staticity constraint. We develop a �nite-di�erence implementation of the method and apply
it to an elasto-viscoplastic model of a bulk metallic glass based on the shear transformation zone
theory. We show that in a two-dimensional plane strain simple shear simulation, the method is in
quantitative agreement with an explicit method. Like the �uid projection method, it is e�cient and
numerically robust, making it practical for a wide variety of applications. We also demonstrate that
the method can be extended to simulate objects with evolving boundaries. We highlight a number of
correspondences between incompressible �uid mechanics and quasi-static elastoplasticity, creating
possibilities for translating other numerical methods between the two classes of physical problems.
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1. Introduction

A wide variety of materials of scienti�c and technological importance exhibit elastoplastic be-
havior, such as metals [2, 3], granular materials [4], aerogels [5], and amorphous solids such as bulk
metallic glasses (BMGs) [6]. At low levels of stress these materials typically behave elastically, so that
the deformation they undergo is reversible when the stress is removed. However, at higher levels of
stress, the material will start to yield, and undergo plastic, irreversible deformation that will remain
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a�er the stress is removed. Describing elastoplastic1 behavior within a consistent theoretical frame-
work has been the subject of major research e�ort over many decades, particularly from the 1950’s
onward. As described in a recent review article [7], accurately characterizing elastoplastic behavior
has proved challenging, since it is not obvious how to separate the elastic and plastic response at the
microscopic level. Several di�erent frameworks have emerged, each of which is based on di�erent
assumptions of how the elastic and plastic behavior are combined.
Currently, perhaps the most widely-used framework to study elastoplastic materials is hyper-

elastoplasticity [8, 9]. �ismodel is based on introducing a initial undeformed reference con�guration
of a material. A time-dependent mapping is then employed, transforming the reference con�guration
into the deformed con�guration at a later time. �e deformation gradient tensor F is then de�ned
as the Jacobian matrix of the mapping, and represents how an in�nitesimal material element is
transformed. A purely elastic material can then be described in terms of a constitutive law that gives
stress as a function of F. To generalize this to elastoplastic behavior, the Kröner–Lee decomposition
was developed, whereby the deformation gradient tensor is viewed as the product of elastic and plastic
parts, F = FeFp [10, 11]. �is decomposition has been successfully used to model the elastoplastic
behavior of a variety of materials such as metals and metallic glasses [12, 13, 14], and can be carried
out in commercial solid mechanics so�ware such as Abaqus. However, the decomposition has
also been extensively debated within the literature. For materials that undergo very large plastic
deformation and rearrangement, the notion of a mapping from an initial con�guration may become
problematic. �e decomposition is non-unique, whereby the stress remains invariant under the
transformation of the intermediate con�guration (Fe ,Fp) ↦ (FeRT,RFp) for an arbitrary rotation
R. While Fe and Fp remain useful mathematical quantities, they may no longer retain their expected
physical interpretations [7], which has led to recent e�orts to clarify this from a micromechanical
perspective, at least for crystalline solids [15].
An alternative framework is hypo-elastoplasticity, which is based on an additive decomposition

of the Eulerian rate-of-deformation tensor into elastic and plastic parts, D = Del +Dpl [16, 17, 18].
�is approach has some drawbacks: it has mainly been applied to elastoplastic simulations involving
only linear elastic deformation, since it is di�cult to capture a nonlinear elastic strain response
purely through Del. In particular, several researchers have noted some undesirable e�ects of the
decomposition [19, 20], such as leaving a residual stress a�er an elastic strain cycle [21]. Furthermore,
because the framework is based on velocity as opposed to deformation, it can lead to the build-up
of numerical errors during time-integration [22, 23]. However, because it is based on Eulerian
quantities, it does not depend on an undeformed con�guration, which is a potential advantage for
materials undergoing large strains. �e aforementioned di�culties are typically minor in the limit
of small elastic deformation, and hence it may provide a reasonable framework for many materials
such as metals and metallic glasses that have large elastic constants.
Another feature of hypo-elastoplasticity is that it naturally �ts within an Eulerian, �xed-grid

framework, and there are several recent trends in numerical computation that make �xed-grid

1�roughout this article, we use “elastoplastic” to refer to any material response that is a combination of reversible
elastic deformation and irreversible plastic deformation. �is includes, for example, rate-independent elastic–perfectly
plastic models and rate-dependent elasto-viscoplastic models.
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methods desirable. A �xed grid has simpler topology, making it easier and more e�cient to program,
and simpler to parallelize. Eulerian methods are also a natural environment in which �uid–structure
interactions are accounted for, since �xed-grid frameworks are o�en the technique of choice for
�uids [24, 25]. Several approaches for dealing with nonlinear hyperelasticity have been proposed by
treating the deformation gradient tensor as an Eulerian �eld [26, 27, 28] or by introducing a reference
map �eld that describes the deformation from the initial undeformed state [29, 30, 31, 32]. Other
physical e�ects such as coupling to electrical �elds [33] or the di�usion of temperature �t well within
an Eulerian framework. Some manufacturing processes featuring continuous motion of material,
such as extrusion [34], are also well-suited to the Eulerian viewpoint.
Starting from the additive decomposition of D, and coupling it with a continuum version of

Newton’s second law, one ends up with a closed system of partial di�erential equations for velocity,
stress, and typically a set of additional internal variables. From this system a direct, explicit numerical
scheme can be constructed. �e scheme resolves elastic waves in the material, leading to a restriction
on the numerical timestep due to the Courant–Friedrichs–Lewy (CFL) condition. Formanymaterials
of interest, such as metals, the elastic wave speed is on the order of kilometers per second, which
makes it prohibitive to simulate processes on physically relevant time scales of seconds, hours, or days.
Because of this, most applications of hypo-elastoplasticity have been interested in rapid processes
such as impact [35], or have scaled the elastic constants to be arti�cially so� [36]. If one scales the
hypo-elastoplasticity equations to examine the long timescale and small velocity limit, one �nds that
the continuum version of Newton’s second law can be replaced with a constraint that the stresses
remain in quasi-static equilibrium.
In this paper, we show that there is a strong mathematical connection between quasi-static hypo-

elastoplasticity and the incompressible Navier–Stokes equations. For an incompressible �uid, the
relevant variables are the velocity and pressure. �ere is an explicit update equation for velocity, and
the incompressibility constraint requires that the velocity remain divergence-free. In this situation,
a well-established method of solution is the projection method of Chorin [1], described in detail
in Subsec. 2.2, whereby the �uid velocity is explicitly updated, and then an elliptic problem for
the pressure is solved, which is used to orthogonally project the velocity �eld to maintain the
incompressibility constraint. By exploiting the mathematical correspondence, we have developed a
new numerical method for quasi-static elastoplasticity that is analogous to the projection method
for incompressible �uid dynamics. It takes an analogous approach, whereby the stress is explicitly
updated, and then an elliptic problem for the velocity is solved, which is used to orthogonally project
the stress to maintain the quasi-staticity constraint.
To the best of our knowledge, this mathematical correspondence has not been noted and ex-

plored in detail before, and the resultant numerical method based on a projection step to restore
quasi-staticity is distinct from existing computational approaches. Some of the most well-established
numerical methods make use of an updated Lagrangian formulation and a mesh that deforms with
the material [37, 38, 39]. Ponthot [40] developed an implicit simulation approach for elastoplasticity,
although it again makes use of a moving-mesh framework, leading to di�erent mathematical consid-
erations. A number of authors developed and analyzed two-step algorithms for rate-independent
plasticity, which involve an elastic predictor step followed by a plastic corrector step whereby the
stress is projected to the yield surface [41, 42, 43, 44, 45, 46]. However, this notion of a projection,
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which is carried out for each material element, is distinctly di�erent from the global stress projection
that we develop here.
In Section 2, we describe the mathematical correspondence to incompressible �uid mechanics

and the associated numerical procedure. In Section 3, to illustrate the method, we develop a �nite-
di�erence implementation of it to study a speci�c rate-dependent, elasto-viscoplastic model of a
bulk metallic glass based on the shear transformation zone (STZ) theory. Originally developed by
Falk and Langer [47], this model has undergone signi�cant development [48, 49], and has been
applied to a wide variety of amorphous materials. �e STZ model of the bulk metallic glass is an
appropriate numerical example, since BMGs can undergo large amounts of plastic deformation in
certain situations (such as at high temperature), and have elastic moduli on the order of 10–100 GPa,
meaning that experimental tests are o�en in the quasi-static regime. A previous study that examined
cavitation as a fracture mechanism in the STZ model speci�cally described the long timescale limit
and made use of the quasi-staticity constraint for theoretical analysis [50].
While our numerical examples focus on the STZ model of a BMG, we note that the core of the

numerical approach can be applied to a wide variety of plasticity models and physical problems. It
could apply to other descriptions of BMGs, such as free-volume-basedmodels [51, 52, 53], which result
in equations with a similar mathematical structure. It could also be applied to hypo-elastic materials
or to rate-independent plasticity models. �e method is not limited to the �nite-di�erence method,
and alternative discretization procedures could be used, such as the �nite-volume or discontinuous
Galerkin methods.

�e �rst numerical example we present is a BMG undergoing simple shear deformation in a
two-dimensional, plane strain, periodic geometry, which is simple enough to allow for quantitative
analysis (Section 4). By choosing parameters appropriately, we quantitatively compare the quasi-static
projection method to the explicit scheme. We provide numerical evidence that the two methods
agree in the quasi-static limit. We also show that the quasi-static method can simulate elastoplastic
dynamics on physically realistic timescales.
Many important problems of interest involve moving boundaries and hence we need an Eulerian

description of such evolving boundaries. In Section 5 we extend the method to implement a traction-
free boundary condition at a boundary described by the level set method [54, 55, 56]. Finally, since
the projection method makes use of the same numerical framework as the explicit scheme, the
two methods can be interchanged making it possible to simulate phenomena on multiple disparate
timescales. We previously demonstrated this capability to examine dynamic crack propagation [57].
Here, we present another case, of a bar that is loaded on a slow, quasi-static timescale and then
released, undergoing rapid vibrations.
While many computational methods for elastoplasticity are already available, we �nd that the nu-

merical method developed here o�ers a useful practical approach for dealing with hypo-elastoplastic
materials in the quasi-static limit. One of the main advantages of the �uid projection method is that it
maintains the incompressibility condition through a single algebraic problem for the pressure, which
is generally well-conditioned and can be carried out e�ciently, and we �nd that many of the same
bene�ts remain valid for the elasto-plasticity method we develop. �roughout the paper, we �nd a
surprising number of correspondences between the two methods, such as analogous considerations
for boundary conditions or the uniqueness of solutions. �e mathematical connection opens up
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interesting possibilities for translating numerical methods for incompressible �uid mechanics over
to quasi-static elastoplasticity and vice versa.

2. �eoretical development

2.1. An elastoplastic material model
We consider an elastoplastic material with velocity v(x, t) and Cauchy stress tensor σ(x, t). �e

spin is de�ned as ω = ∇ × v, and the rate-of-deformation tensor is D = (∇v + (∇v)T)/2. For an
arbitrary �eld f (x, t), we de�ne the advective derivative as d f /dt = ∂ f /∂t + (v ⋅ ∇) f . Using the
hypo-elastoplastic kinematic relation, the rate-of-deformation tensor is assumed to be the sum of
elastic and plastic parts such thatD = Del +Dpl. �e linear elastic constitutive relation is

Dσ
Dt

= C ∶ Del = C ∶ (D −Dpl), (1)

where C is a fourth-rank sti�ness tensor, which for simplicity of presentation is assumed to be
isotropic, and constant in space and time. �e le� hand side of Eq. 1 is the Jaumann objective
stress rate, Dσ/Dt = dσ/dt + σ ⋅ ω − ω ⋅ σ , which gives the time-evolution of the stress taking into
account translation and rotation of the material, under the assumption that the elastic deformation
is small [58]. By considering force balance, the velocity satis�es

ρdv
dt

= ∇ ⋅ σ , (2)

where ρ is the density of the material. Taken together, Eqs. 1 and 2 form a hyperbolic system of
equations from which a �nite-di�erence simulation of an elastoplastic material can be constructed.
However, the hyperbolic system will resolve the propagation of elastic waves, and therefore the
timestep ∆t and grid spacing ∆x must be chosen to satisfy the CFL condition for numerical stability
to be maintained. If ce is an elastic wave speed, then the timestep must satisfy ∆t ≤ ∆x/ce . For many
problems of practical importance, such as simulating metals, this will pose a prohibitively strong
restriction. A typical elastic wave speed would be on the order of kilometers per second, while a grid
spacing could be on the order of millimeters to micrometers, thus requiring a timestep on the order
of microseconds or smaller. �is restriction would make it infeasible to simulate real problems on
the timescale of seconds, minutes, or hours.
We now consider the limit when the deformation of the material happens on a time scale that is

much longer than the time for elastic waves to propagate across the system. We rescale the equations
in the limit of long times and corresponding small velocity gradients by introducing

∇v = ε∇̃v, t = t̃
ε
, (3)

where ε is a small dimensionless parameter. Under these scalings, the constitutive equation becomes

Dσ
D t̃

= C ∶ (D̃ − Dpl

ε
) , (4)
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where D̃ = (∇̃v + (∇̃v)T)/2, and the force balance equation becomes

ερdv
dt̃

= ∇ ⋅ σ . (5)

�ere are two occurrences of ε in these equations. �e ε−1 in Eq. 4 signi�es that over long durations,
plastic deformation will become increasingly important, while the ε term on dv/dt signi�es that
accelerations decrease in importance. �rough these considerations, one can approximate the
material response by neglecting the dv/dt̃ term to give

∇ ⋅ σ = 0, (6)

which physically states that forces remain in quasi-static equilibrium. A numerical scheme could
then be constructed using the constitutive equation Eq. 1 subject to the constraint in Eq. 6. However,
this would raise several questions. It is not clear how to update the velocity, since the ability to
explicitly time-integrate it is lost. It is also not clear whether solutions of this system will match the
solutions of the original system.

2.2. Review of the projection method for the incompressible Navier–Stokes equations
Tomake progress with the above problem, we now consider a di�erent class of problems involving

an incompressible �uid with velocity v, pressure p, and density ρ. �e �uid velocity satis�es the
Navier–Stokes equations,

ρdv
dt

= −∇p +∇ ⋅ T, (7)

where T is the �uid stress tensor, and the �uid density will evolve according to

dρ
dt

= −ρ(∇ ⋅ v). (8)

In addition, an equation of state linking the �uid density to the pressure must be satis�ed. For typical
weakly compressible �uids, the equation ρ − ρ0 = (p − p0)/c2 is appropriate, where ρ0 and p0 are
reference densities and pressures respectively, and c is a large constant that corresponds to a sound
wave speed through the �uid.
In a similar manner to the elastoplastic system of equations considered in the previous section,

Eqs. 7 and 8 form a hyperbolic system of equations that could be used to construct an explicit
�nite-di�erence simulation of the �uid, but due to the CFL condition, the presence of the sound
speed places a severe restriction on the timestep size. Again, for many practical problems, one may
wish to consider time scales that are much longer than the time for compressive waves to propagate
across the system. Looking at long times by introducing t = t̃/ε as in Eq. 3, one �nds that

εdρ
dt̃

= −ρ(∇ ⋅ v) (9)

which can be approximated by
∇ ⋅ v = 0 (10)
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so that the velocity is divergence-free. �e resultant system given by Eqs. 7 and 10 are the incom-
pressible Navier–Stokes equations.
Numericalmethods to simulate the incompressibleNavier–Stokes equations have been extensively

studied and developed. In work by Chorin [59], aiming at addressing the constraint imposed by
Eq. 10, the incompressible Navier–Stokes equations were simulated by examining the compressible
system as the parameter c becomes large. Numerical evidence shows that in the limit in which
c becomes large, the compressible solutions approach the incompressible ones. �is can also be
understood by introducing a vector space Vv of all velocity �elds. �e divergence-free solutions
v ∈ Vv, which satisfy ∇ ⋅ v = 0, form a subspace in Vv. In the compressible case, the dρ/dt term in
Eq. 9, in tandem with the pressure gradient in Eq. 7, force the system toward being divergence-free.

�is observation can be used as the basis of the projection method for incompressible Navier–
Stokes equations [1]. Suppose that vn represents the discretized velocity �eld a�er n steps in a
�nite-di�erence simulation. To advance forward by ∆t to the (n + 1)th step an intermediate velocity
v∗ is �rst computed by neglecting the pressure term, so that

ρ(v∗ − vn)
∆t

= −(vn ⋅ ∇)vn +∇ ⋅ Tn . (11)

If the pressure at the (n + 1)th step was known then vn+1 could be computed according to

vn+1 − v∗
∆t

= − 1
ρ
∇pn+1. (12)

Taking the divergence of Eq. 12 and enforcing that ∇ ⋅ vn+1 = 0 gives

∇ ⋅ v∗ =
∆t
ρ
∇ ⋅ (∇pn+1) =

∆t
ρ
∇2pn+1 (13)

and hence the pressure satis�es a Poisson equation where the source term is ∇ ⋅ v∗, which is an
elliptic problem that can be solved numerically using linear algebra. Boundary conditions on p in
this elliptic problem depend on the speci�c situation considered, with the two most common being
a Dirichlet condition for a constant pressure boundary condition, or a Neumann condition arising
from a condition on the normal velocity component. Once pn+1 is evaluated, Eq. 12 can then be
used to calculate vn+1. A schematic representation of the method in the vector space Vv is shown in
Fig. 1(a). �e intermediate velocity may not be in the divergence-free subspace, but the combination
of Eqs. 12 & 13 ensures that it is projected back to this subspace.
For consistency, it is also necessary to show that the projection applied by Eq. 12 is in some sense

orthogonal to the divergence-free subspace. To do this, Vv can be endowed with an inner product,
where for any a, b ∈ Vv,

⟨a, b⟩ = ∫ a ⋅ b d3x. (14)

Hence, if problem-speci�c boundary terms are neglected, the projection vP = vn+1 − v∗ satis�es

⟨vn+1 − vn , vP⟩ = −
∆t
ρ ∫ (vn+1 − vn) ⋅ ∇pn+1 d3x =

∆t
ρ ∫ (∇ ⋅ vn+1 −∇ ⋅ vn)pn+1 d3x = 0 (15)
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Figure 1: A schematic representation of the timestep in (a) the projection method for the incompressible Navier–Stokes
equations and (b) quasi-static elastoplasticity.

and hence it is orthogonal to the divergence-free subspace. �is notion of orthogonality ensures that
the projection step removes the component of non-zero divergence in v∗ without introducing any
additional contribution to the solution in the space that is orthogonal to the projection [60], which
over time could create a spurious dri� in the solution.

2.3. A projection method for quasi-static elastoplasticity
Following the previous two sections, we conclude that there is close correspondence between

the elastoplastic system and the Navier–Stokes equations for �uid �ow. �ere is a correspondence
between the variables (σ , v) in the elastoplastic system and the variables (v, p) for �uid �ow. �e
limiting procedures that are employed, where the equations are scaled to examine long times, are
identical.
It is therefore natural to consider whether the projection method for the incompressible Navier–

Stokes equations can be adapted for simulating quasi-static elastoplasticity. Suppose that σn is a
discretized stress �eld a�er n timesteps, and consider making a timestep of size ∆t. To begin, an
intermediate stress σ∗ is calculated by neglecting the total rate-of-deformation term C ∶ D in Eq. 1,
so that σ∗ − σn

∆t
= σn ⋅ ωn − ωn ⋅ σn − (vn ⋅ ∇)σn −C ∶ Dpln . (16)

Assuming the velocity vn+1 at the (n + 1)th step can be calculated, and consequently that the total
deformationDn+1 is known, then the stress at the (n + 1)th timestep is given by

σn+1 − σ∗
∆t

= C ∶ Dn+1. (17)

Taking the divergence of this equation and enforcing that ∇ ⋅ σn+1 = 0 yields

∇ ⋅ σ∗ = −∆t∇ ⋅ (C ∶ Dn+1). (18)

Eq. 18 is an algebraic system for the velocity vn+1. It is analogous to Eq. 13 for the �uid projection
method, and will involve second-order di�erential operators. It may also involve mixed derivatives,
and coupling between the components of velocity, but in principle can be solved using standard
numerical linear algebra techniques. As in the �uid projection method, the boundary conditions for
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vn+1 will be problem-speci�c, but typical cases will have simple implementations: a constant velocity
boundary condition gives a Dirichlet condition on vn+1, while a traction boundary condition gives a
Neumann-like condition (discussed in Sec. 5). Once vn+1 is calculated, Eq. 17 can be used to evaluate
σn+1.
A schematic representation of the algorithm is shown in Fig. 1(b) in the vector spaceVσ of stresses,

where the quasi-static solutions form a subspace. As for the �uid projection method, it is useful
to establish a notion of orthogonality by introducing an inner product. �is can be constructed
by making use of the compliance tensor S, which gives the in�nitesimal strain ε in terms of stress
according to ε = S ∶ σ , so that S = C−1. For real materials, both S and C are positive-de�nite, in order
to ensure that the strain energy density is positive. For two stresses a, b ∈ Vσ , consider the inner
product de�ned as

⟨a, b⟩ = ∫ a ∶ S ∶ b d3x. (19)

Since S is positive-de�nite, this will be a valid inner product. �e projection σP = σn+1 − σ∗ satis�es

⟨σn+1 − σn , σP⟩ = ∆t ∫ (σn+1 − σn) ∶ S ∶ (C ∶ Dn+1) d3x

= ∆t ∫ (σn+1 − σn) ∶ Dn+1 d3x = ∆t ∫ (σn+1 − σn) ∶ ∇vn+1 d3x

= −∆t ∫ (∇ ⋅ σn+1 −∇ ⋅ σn) ⋅ vn+1 d3x = 0, (20)

and therefore the projection is orthogonal the subspace of quasi-static solutions. For an isotropic
linear elastic material with bulk modulus K and shear modulus µ the components of the sti�ness
tensor are

Ci jkl = λδi jδkl + µ(δikδ jl + δi lδ jk), (21)

where λ = K − 2µ
3 is Láme’s �rst parameter. �e components of the compliance tensor are

Si jkl =
1
6Kµ

[−λδi jδkl + 3K
2 (δikδ jl + δi lδ jk)] . (22)

For this case, the inner product can be written as

⟨a, b⟩ = 1
6Kµ ∫ (3Ka ∶ b − λ(tr a)(trb)) d3x. (23)

As described in Appendix A, an integral argument can also be used to show that Eq. 18 has a unique
solution for Dirichlet boundary conditions.

3. A numerical implementation

We now describe a speci�c �nite-di�erence numerical implementation of the algorithms pre-
sented in Sec. 2. Wemake use of a rate-dependent elastoplastic model of a BMG that is based upon the
STZ theory. Using this model, we test the quasi-static time-integration method against the traditional
explicit scheme. All of the methods described below were implemented in a custom-written C++
code, using the OpenMP library to multithread the loops involved in the �nite-di�erence update.
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3.1. Kinematics and elasticity
A plane strain formulation in the x and y coordinates is used [61]. �e velocity is given by

v = (u, v , 0), and the stress tensor is written as

σ =
⎛
⎜
⎝

−p + s − q τ 0
τ −p − s − q 0
0 0 −p + 2q

⎞
⎟
⎠
. (24)

Here, p is the pressure, s and τ are the components of deviatoric stress within the xy plane, and
q is the component of deviatoric stress in the z direction out of the plane. �e deviatoric part of
the stress tensor is written as σ0 = σ − 1

31 tr σ and the magnitude of the deviatoric stress tensor is
∣σ0∣ = s̄ =

√
s2 + τ2 + 3q2. �e density is assumed to be a constant ρ0, since elastic deformations are

assumed to be small, and the plastic deformation model is purely deviatoric. In component form,
Eq. 2 reads

ρ0
du
dt

= −∂p
∂x

− ∂q
∂x

+ ∂s
∂x

+ ∂τ
∂y

+ κ∇2u, (25)

ρ0
dv
dt

= −∂p
∂y

− ∂q
∂y

− ∂s
∂y

+ ∂τ
∂x

+ κ∇2v , (26)

where a small additional viscous stress term, κ∇2v has been incorporated. �is term is needed
for numerical stability in the explicit simulation method. However, it is not needed for numerical
stability in the quasi-static method.

�e plastic deformation tensor is proportional to the deviatoric stress tensor and can therefore
be written asDpl = σ0

s̄ Dpl, where Dpl is a scalar function described in detail in the following section.
In component form the constitutive equation, Eq. 1, is given by

dp
dt

= −K (∂u
∂x

+ ∂v
∂y

) , (27)

dq
dt

= −µ
3
(∂u
∂x

+ ∂v
∂y

) − 2µqD
pl

s̄
, (28)

ds
dt

= 2ωτ + µ (∂u
∂x

− ∂v
∂y

) − 2µsD
pl

s̄
, (29)

dτ
dt

= −2ωs + µ (∂u
∂y

+ ∂v
∂x

) − 2µτDpl
s̄

, (30)

where ω = (∂v/∂x − ∂u/∂y)/2, K is the bulk modulus, and µ is the shear modulus. Table 1 shows
the values of the elastic parameters used in this study, which are based on Vitreloy 1, a speci�c type
of BMG whose mechanical properties have been well-studied.

3.2. Plasticity
Plastic deformation is modeled using the shear transformation zone theory of amorphous plastic-

ity [47, 62]. We employ a version of the model used to study fracture [57], which is based on recent
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Parameter Value
Young’s modulus E 101 GPa
Poisson ratio υ 0.35
Bulk modulus K 122 GPa
Shear modulus µ 37.4 GPa
Density ρ0 6125 kg m−3

Shear wave speed cs =
√
µ/ρ0 2.47 km s−1

Table 1: Elasticity parameters used throughout the paper.

Parameter Value
Yield stress sY 0.85 GPa
Molecular vibration timescale τ0 10−13 s
Typical local strain ε0 0.3
Scaling parameter c0 0.4
Typical activation barrier ∆/kB 8000 K
Typical activation volume Ω 300 Å3

Bath temperature T 400 K
Steady state e�ective temperature χ∞ 900 K
STZ formation energy ez/kB 21000 K

Table 2: Parameter values for the STZ plasticity model used throughout the paper. �e Boltzmann constant kB =
1.3806488 × 10−23 J K−1 is used to express the quantities ∆ and eZ in terms of temperature.

theoretical developments [49, 63], although simpli�ed to retain only the crucial details. Here, we
sketch the theoretical principles behind the model and provide the relevant equations.
Consider a BMG at a temperature T below the glass transition temperature. If no stress is applied,

then the constituent atoms will undergo thermal vibrations, but will largely remain in the same
overall packing con�guration with their neighbors; in terms of an energy landscape, they are trapped
within a potential well representing one mechanically stable con�guration. If the BMG is subjected
to a shear stress, then discrete events will occur whereby some atoms in a local region undergo
an irreversible change in con�guration—the applied stress changes the energy landscape to lower
the potential barrier of the well, so that it becomes possible to jump to another well representing a
di�erent mechanically stable con�guration.

�is physical picture can be used to derive a continuum plasticity model. One imagines that the
material has a population of shear transformation zones, which represent localized regions that are
susceptible to shear-driven con�gurational changes. �e density of STZs is described in terms of an
e�ective disorder temperature χ. For s̄ < sY, where sY is the yield stress of the material, the plastic
deformation is zero. For s̄ ≥ sY, the plastic deformation is given by

Dpl(σ0, T , χ) =
Λ(χ)C(s̄, T)

τ0
(1 − sY

s̄
) , (31)

where τ0 is a molecular vibration timescale, C(s̄, T) is the STZ transition rate, and Λ(χ) = e−ez/kB χ is
the density of STZs in terms of e�ective temperature, where ez is the STZ formation energy and kB is
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the Boltzmann constant. �e function C(s̄, T) is speci�ed in terms of the forward and backward
STZ transition rates,

C(s̄, T) = 1
2(R(s̄, T) +R(−s̄, T)), (32)

which follow a linearly stress-biased thermal activation process

R(±s̄, T) = exp(−∆ ∓Ωε0 s̄
kBT

) , (33)

where ∆ is a typical energy activation barrier, Ω is a typical activation volume, and ε0 is a typical
local strain at the transition. Substituting Eq. 33 into Eq. 32 yields

C(s̄, T) = e−∆/kBT cosh Ωε0 s̄
kBT

. (34)

For very large positive values of s̄, it is possible that the stress-biasing Ωε0 s̄ will exceed the activation
barrier ∆, in which case the physical picture of a thermally activated process is no longer valid. In
previous work, we have assumed that for s̄Ωε0 ≥ ∆ the plastic behavior is dominated by a di�erent,
weaker, dissipative mechanism [62, 36]. However, we omit this term here for mathematical simplicity.
For the parameters given in Table 2 the barrier is reached at s̄ = 1.44sY, and apart from the �nal
example in Subsec. 5.5 where this issue is considered in more detail, the deviatoric stresses never
exceed 1.35sY, since the exponential growth of Dpl as a function of s̄ causes large deviatoric stresses
to rapidly relax. �e e�ective temperature follows a heat equation of the form

c0
dχ
dt

=
(Dpl ∶ σ0)(χ∞ − χ)

sY
(35)

so that χ increases in response to plastic deformation and saturates at χ∞. Since an increase in χ will
also increase Dpl as given by Eq. 31, the plasticity model typically leads to shear banding [64, 65].

3.3. Numerical methods for explicit simulations
�e simulations are carried out on a rectangular M × N grid of square cells with side length

h. As shown in Fig. 2(a), a staggered arrangement is used whereby the components of velocity
u, v are stored at cell corners and indexed with integers, and the components of stress p, q, s, τ
and e�ective temperature χ are stored at cell centers and indexed with half-integers. �e explicit
simulation method employs Eqs. 25 to 30 and Eq. 35 to explicitly update all the simulation �elds,
using a �rst-order temporal discretization and a second-order spatial discretization.

�e �rst derivatives on the right hand sides of Eqs. 25 to 30 are evaluated using centered di�er-
encing. It can be observed that the equations for velocity depend on �rst derivatives of stress and
vice versa. If fi , j represents one of the discretized �elds at a given instant, then the staggered �rst
derivative in the x direction is evaluated as

[∂ f
∂x

]
i+ 12 , j+

1
2

=
fi+1, j + fi+1, j+1 − fi , j − fi , j+1

2h
. (36)
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(M ,N)

Figure 2: (a) Arrangement of �elds in the spatial discretization. �e simulation is divided into square cells of side length
h. �e velocity v and reference map ξ are stored at cell corners (dark blue), which are indexed with integers. �e stress
tensor σ and e�ective temperature χ are stored at cell centers (magenta), which are indexed with half-integers. (b) Grid
arrangement in the shearing simulation. �e velocity in the top and bottom rows (red) of the simulation is �xed to create
simple shear. To enforce the periodic boundary conditions in the horizontal x direction, periodic images for both the
cell-centered (pink) and cell-cornered (light blue) �elds are used. In the example shown, (M ,N) = (6, 4).

�e viscosity terms make use of a colocated second-order derivative, which is evaluated in the x
direction as

[∂
2 f
∂x2

]
i , j
=

fi+1, j − 2 fi , j + fi−1, j
h2

. (37)

�e advective derivatives on the le� hand side of Eqs. 25 to 30 need to be upwinded for stability. �is
is achieved by using the second-order ENO numerical scheme [66], which in the x direction is given
by

{∂ f
∂x

}
i , j
= 1
2h

⎧⎪⎪⎪⎨⎪⎪⎪⎩

− fi+2, j + 4 fi+1, j − 3 fi , j if ui , j < 0 and ∣[ fxx]i , j∣ > ∣[ fxx]i+1, j∣,
3 fi , j − 4 fi−1, j + fi−2, j if ui , j > 0 and ∣[ fxx]i , j∣ > ∣[ fxx]i−1, j∣,
fi+1, j − fi−1, j otherwise,

(38)

where [ fxx]i , j is the second-order centered-di�erence at i , j evaluated using Eq. 37. �e ENO
derivative therefore switches between an upwinded one-sided derivative and a centered derivative,
depending onwhich set of three �eld values ismore colinear. In the y direction, analogous expressions
to Eq. 36 and Eq. 38 are used.

�e �rst-order forward Euler scheme is used for timestepping. If velocity components and
pressure at timestep n are written as un, vn, and pn, and a timestep ∆t is taken, then at timestep
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(n + 1) they are given by

ρ0
un+1 − un

∆t
= −ρ0(vn ⋅ ∇)un −

∂pn
∂x

− ∂qn
∂x

+ ∂sn
∂x

+ ∂τn
∂y

+ κ∇2un , (39)

ρ0
vn+1 − vn
∆t

= −ρ0(vn ⋅ ∇)vn −
∂pn
∂y

− ∂qn
∂y

− ∂sn
∂y

+ ∂τn
∂x

+ κ∇2vn , (40)

pn+1 − pn
∆t

= −(vn ⋅ ∇)pn − K (∂un

∂x
+ ∂vn

∂y
) . (41)

�edeviatoric stress components are updatedwith a similar procedure, butmake use of amodi�cation
to accommodate for the rapid growth of Dpl when s̄ exceeds the yield stress sY, which causes a loss of
accuracy if ∆t is too large. Suppose that at a given location and timestep, a discretized deviatoric
stress s̄n is slightly above sY. Physically, plastic deformation should cause the deviatoric stress to
decrease until reaching the yield surface so that s̄n+1 ≈ sY. However, if other terms are neglected, then
the Euler step will give s̄n+1 = s̄n −2µDpl∆t/sY at the next timestep, which could be signi�cantly lower
than sY if Dpl is large, overshooting the yield surface. To solve this, an adaptive timestepping routine
is used that divides the interval ∆t into subintervals so that the incremental changes to s̄ remain
small—this accomplishes a similar goal as the return-mapping algorithms for rate-independent
plasticity [41, 46]. �e routine, described in Appendix B, considers the coupled system s̄ and χ and
returns modi�ed functions D̃pln and F̃n for use in the �nite-di�erence update. �e deviatoric stress
and e�ective temperature are updated according to

qn+1 − qn
∆t

= −(vn ⋅ ∇)qn −
µ
3
(∂un

∂x
+ ∂vn

∂y
) − 2µD̃

pl
n qn

s̄n
, (42)

sn+1 − sn
∆t

= −(vn ⋅ ∇)sn + 2ωnτn + µ (∂un

∂x
− ∂vn

∂y
) − 2µD̃

pl
n sn

s̄n
, (43)

τn+1 − τn
∆t

= −(vn ⋅ ∇)τn − 2ωnsn + µ (∂un

∂y
+ ∂vn

∂x
) − 2µD̃

pl
n τn

s̄n
, (44)

χn+1 − χn
∆t

= −(vn ⋅ ∇)χn − F̃n , (45)

where ωn = (∂vn/∂x − ∂un/∂y)/2 and the vn term in the advective derivatives is evaluated as the
average of the velocities at the four corners of the grid cell.

�e simulation also makes use of a reference map vector �eld ξ = (ξx , ξy) stored at cell corners.
�is �eld has no physical in�uence, but is used to track the deformation of thematerial. It is initialized
as

ξ(x, 0) = x (46)

and is then updated according to

dξ
dt

= ∂ξ
∂t

+ (v ⋅ ∇)ξ = 0, (47)
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following the same discretization methods as for the other �elds. Contours of the components of
the reference map initially form a rectangular grid and then deform with the material. Using ξ, the
(2 × 2)-component deformation gradient tensor is given by

F = ∂x
∂ξ
, (48)

which can be numerically evaluated using centered di�erences of ξ. Once F is known, the Green–
Saint-Venant strain tensor is given by E = 1

2(FTF − 1). �e deviatoric part of the strain tensor is
de�ned as E0 = E − 1

21 trE.

3.4. Numerical methods for quasi-static simulations
�e quasi-static scheme makes use of the same simulation framework as the explicit scheme. It

employs the same rectangular grid, and uses Eqs. 36 and 38 for carrying out spatial derivatives. To
carry out a timestep of size ∆t, Eq. 16 is �rst used to calculate in intermediate stress σ∗, which in
component form is

p∗ − pn
∆t

= −(vn ⋅ ∇)pn , (49)

q∗ − qn
∆t

= −(vn ⋅ ∇)qn −
2µD̃pln qn

s̄n
, (50)

s∗ − sn
∆t

= −(vn ⋅ ∇)sn + 2Ωnτn −
2µD̃pln sn

s̄n
, (51)

τ∗ − τn
∆t

= −(vn ⋅ ∇)τn − 2Ωnsn −
2µD̃pln τn

s̄n
. (52)

�e adaptive prodecure described in Appendix B is used to evaluate the plastic deformation term
D̃pln that features in these equations. It also returns F̃n, which allows χn+1 to be calculated according
to Eq. 45.
If the velocity vn+1 at timestep n + 1 is known, then by following Eq. 17, the components of σn+1

are given by

pn+1 − p∗
∆t

= −K (∂un+1

∂x
+ ∂vn+1

∂y
) , (53)

qn+1 − q∗
∆t

= −µ
3
(∂un+1

∂x
+ ∂vn+1

∂y
) , (54)

sn+1 − s∗
∆t

= µ (∂un+1

∂x
− ∂vn+1

∂y
) , (55)

τn+1 − τ∗
∆t

= µ (∂un+1

∂y
+ ∂vn+1

∂x
) . (56)

15



To calculate vn+1, the quasi-staticity constraint at the (n + 1)th timestep is used, which by retaining
the viscous stress is slightly modi�ed to 0 = ∇ ⋅ σn+1 + κ∇2vn+1. Following Eq. 18, the velocity satis�es

(µ + K′ + κ′)∂
2un+1
∂x2

+ (µ + κ′)∂
2un+1
∂y2

+ K′
∂2vn+1
∂x∂y

= 1
∆t
(∂p∗
∂x
+ ∂q∗

∂x
− ∂s∗

∂x
− ∂τ∗

∂y
) , (57)

(µ + κ′)∂
2vn+1
∂x2

+ (µ + K′ + κ′)∂
2vn+1
∂y2

+ K′
∂2un+1
∂x∂y

= 1
∆t
(∂p∗
∂y
+ ∂q∗

∂y
+ ∂s∗

∂y
− ∂τ∗

∂x
) , (58)

where K′ = K + µ
3 and κ′ = κ

∆t . In the typical regime of interest where ∆t becomes large, the e�ect of
the viscous term is therefore negligible.
Eqs. 57 and 58 form an algebraic system for the components of velocity. �e system features

second derivatives and bears some similarity to the Poisson equation that must be solved for the
�uid projection method. However, the system is more complicated, since the two components of
velocity are coupled, and a mixed xy-derivative is present. To solve the equations, a linear system A0
is constructed where the derivatives are discretized using Eqs. 36 & 37, and

[ ∂2 f
∂x∂y

]
i , j
=

fi+1, j+1 − fi+1, j−1 − fi−1, j+1 + fi−1, j−1
4h2

,

where fi , j represents the components of an arbitrary �eld. �e linear system also takes into account
problem-speci�c boundary conditions, which are discussed later.

�e presence of the mixed derivative means that the linear system is not weakly diagonally domi-
nant, unlike the Poisson problem for the �uid projection method. However, in general as discussed
previously, the matrix will be symmetric and positive-de�nite, other than possible complications
due to the application of boundary conditions. �e linear system is therefore well-suited to be solved
by many linear algebra techniques and will admit a unique solution. For the cases considered here,
the linear system is solved using a custom-written geometric multigrid algorithm.

4. Shearing between two parallel plates

�e�rst example considered is a material being sheared between two parallel plates. �is example
has simple boundary conditions, but exhibits complex behavior and shear banding, making it a
useful environment in which to compare the explicit and quasi-static simulation approaches. �e
example uses a domain that is periodic in the x direction and covers −γL < x ≤ γL,−L ≤ y ≤ L where
γ is a dimensionless constant. Initially, the velocity and Cauchy stress are zero, and the reference map
is given Eq. 46. A natural time unit is ts = L/cs. �e boundary conditions on the top and bottom
boundaries are

v(x ,±L, t) = (±U(t), 0), ∂σ
∂y

∣
y=±L

=
∂χ
∂y

∣
y=±L

= 0, ξ(x ,±L, t) = (x ∓ X(t),±L), (59)

where the function U(t) satis�es

U(t) = {
UB t
ts for t < ts,
UB for t ≥ ts,

(60)
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so that the speed of the parallel plates is linearly increased to a value UB, a�er which it remains
constant. �is form for U(t) causes the stresses in the material to gradually increase, and avoids the
problem that applying U(t) = UB for t > 0 would immediately create a very large deformation rate
next to the boundaries. For consistency, the function X(t) in Eq. 59 is given by

X(t) = ∫ t

0
U(t′)dt′ = {

UB t2
2ts for t < ts,
UB ( ts

2 + t) for t ≥ ts.
(61)

A schematic of the grid point layout is shown in Fig. 2(b). �e cell-cornered grid points (i , j)
cover the index ranges i = 0, 1, . . . ,M − 1 and j = 0, 1, . . . ,N , and cell-centered grid points cover
the index ranges i = 1

2 ,
3
2 , . . . ,

2M−1
2 and j = 1

2 ,
3
2 , . . . ,

2N−1
2 . �e location of grid point (i , j) is at

(x , y) = (−γL + hi ,−L + h j) so that j = 0 is located on the bottom boundary and j = N is located
on the top boundary. �roughout the simulation, the �eld values for j = 0 and j = N are set using
the boundary conditions in Eq. 59.
Explicit and quasi-static simulations are carried out using the methods described in Subsecs. 3.3

and 3.4 respectively, and are applied to grid points in the range 12 ≤ j ≤ 2N−1
2 . To handle the periodic

boundary conditions, the spatial �nite-di�erence operators wrap around; for example, a reference
to an arbitrary �eld value fM , j is treated as f0, j. In addition, a displacement of 2γL is applied to the
x-component of the reference map, so that ξxM , j = ξx0, + 2γL. When calculating upwinded derivatives
in the y-direction at j = 1

2 , 1 and j = n − 1, 2n−12 using Eq. 38, the simulation falls back on a �rst-order
upwinded derivative if not enough grid points are available to calculate the ENO discretization. For
this example, the algebraic problem considered in the quasi-static simulation method is simple to
implement and makes use of Dirichlet conditions on v at j = 0 and j = N .

4.1. Comparison of explicit and quasi-static methods
We �rst consider a case where the parameters are chosen to allow for a quantitative comparison

between the explicit and quasi-static simulation approaches. We make use of L = 1 cm, γ = 4, and
consider an initial e�ective temperature distribution of the form

χ(x, t) = 630 K + (170 K) exp(−∣20x∣2
2L2

) , (62)

corresponding to a small imperfection in the center of the domain. When subjected to shear, we
expect that a shear band will nucleate from the imperfection, creating a region where a plastic
deformation will be localized. �e parameters given in Tables 1 and 2 are used as a baseline, and for
the given value of L, the natural timescale is ts = 4.05 µs. A grid size of 640 × 160 is used, so that the
grid spacing is h = L

80 .
To quantitatively compare the explicit and quasi-static simulation approaches, a parameter ζ is

introduced that can control the overall speed of the dynamics in a manner similar to the scaling
argument in Eq. 3. �e boundary speed is set to UB = 10−7ζL/ts = 247ζ µm/s and the plastic
deformation rate is scaled by ζ, by replacing τ0 with 10−13ζ−1 s−1. Simulations over a duration of
2×106tsζ−1 = 8.06ζ−1 s are carried out, a�er which the boundaries are each displaced by approximately
2 mm. For ζ = 1, the scales are approximately in physically reasonable ranges for typical experimental
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Figure 3: Plots of e�ective temperature χ at �ve time points for the shear band nucleation simulation, using the explicit
simulation method (le�) and the quasi-static simulation method (right). �e thin dashed white lines are the contours of
the components of the reference map ξ, and show how the material deforms. As described in the text, the simulation
is speeded up by a factor of ζ = 104 from physical parameters to make it computationally feasible to compare the two
numerical methods.
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Figure 4: Plots of pressure p at �ve time points for the shear band nucleation simulation, using the explicit simulation
method (le�) and the quasi-static simulation method (right). �e thin dashed white lines are the contours of the
components of the reference map ξ, and show how the material is deforms. �e simulation is speeded up by a factor of
ζ = 104 from physical parameters.

tests. �e timestep used in the explicit simulation is ∆t = tsh2
2L2 so that the viscous stress can be properly

resolved. �e timestep used in the quasi-static simulation is ∆t = ts ζ
50 respectively.

Figure 3 shows a sequence of snapshots of e�ective temperature, for both the explicit simulation
and the quasi-static simulation, using an arti�cial scaling factor of ζ = 104. �e two simulation
methods give very similar results and are hard to di�erentiate by eye. At t = 50ts, the e�ective
temperature has increased uniformly by a small amount throughout the material, but bands of
slightly higher χ have begun to emerge in the orthogonal directions from the initial imperfection.
By t = 100ts, the horizontal band starts to dominate, and by t = 150ts it has grown across the entire
width of the simulation. �e shear band continues to grow larger by t = 200ts, and accommodates
most of the plastic deformation.
When the full shear band initially forms at t ≈ 150ts, it is approximately three simulation grid
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Figure 5: Comparison of the cross-sections of the deviatoric stress �eld on the line y = 0 for the explicit shear band
simulation (solid lines) and the quasi-static shear band simulation (dashed lines).

points across, and may therefore not be fully resolved; its width may partly be governed by numerical
di�usion. At later times as more plastic deformation occurs, the shear band width continues to grow,
consistent with one-dimensional studies [64]. Figure 4 shows plots of the pressure �eld for the two
simulation method, at the same sequence of time points. �e pressure deviations are relatively small,
reaching values up to 1

10 sY, but again there is very good agreement between the two methods. �e
increased plastic deformation near the initial imperfection leads to a small quadrupolar feature the
pressure �eld.
Figure 5 shows the cross sections of the deviatoric stress ∣σ0∣ for the two simulations, for several

time points up to t = 30ts. �e graph highlights some small di�erences between the methods. In the
quasi-static simulation, ∣σ0∣ is uniform in y up to t = 20ts while the material is in the elastic regime
and the shear stress are below the yield stress. �e corresponding plots for the explicit simulation
are similar, although show slight oscillations, due to elastic waves propagating across the material.
Even though the shearing velocity is gradually increased following Eq. 60, some small elastic waves
are introduced at the start of the simulation, which continue to propagate across the simulation
since there is little damping to remove them. By t = 25ts some plastic deformation starts to occur
resulting in a reduction of shear stress near y = 0. Since the plastic deformation introduces some
dissipation, the elastic waves in the explicit simulation are damped out, meaning that by t = 30ts the
two simulation methods come into closer agreement.

�ese simulations were carried out using eight threads on a Mac Pro (Late 2013) with an 8-core
3GHz Intel Xeon E5 processor. �e explicit simulation used 2,560,000 timesteps, took a total wall
clock time of 8020 s, corresponding to an average wall clock time of 3.13 ms per integration step. �e
quasi-static simulation used 20,000 timesteps, took a total wall clock time of 1370 s, corresponding
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to an average wall clock time of 68.6 ms per integration step. While the quasi-static simulation step
takes more than twenty times longer than the explicit timestep due to solving a linear system using
the multigrid method, its ability to take much larger steps means that the total simulation time is
about a sixth that of the explicit simulation. At lower values of ζ, the quasi-static simulation will
require the same computation time, while the computation time for the explicit simulation take
longer, since the time required is inversely proportional to ζ .

4.2. Quantitative comparison of the explicit and quasi-static simulation methods
�e quasi-static system of equations given by Eqs. 1 and 6 emerges from taking a limit of slow

velocity and long times, and in this section we quantitatively compare the two simulation methods in
this limit. We employ the same boundary conditions as in the previous section, and we expect that
as ζ is reduced, the di�erences between the two methods will tend to zero. However, quantitatively
examining this poses some di�culties, since in addition to simulating di�erent equations, the two
methods introduce di�erent discretization errors. It is therefore necessary to consider additional
parameters that a�ect the discretization.
To evaluate the di�erences between the explicit and quasi-static simulations, a norm

∣∣f ∣∣ =
√

1
16L2 ∫

4L

−4L
dx ∫ L

−L
∣f ∣2dy (63)

is introduced where f is an arbitrary �eld, and the integrals are evaluated using the trapezoidal
rule. By interpreting ∣f ∣2 appropriately, Eq. 63 can be applied to scalars, vectors, and tensors. To
create more of a spread in the e�ective temperature �eld, we consider an alternative initial condition
corresponding to rotated line of higher χ. �e function

Γ(x′, y′) =
⎧⎪⎪⎨⎪⎪⎩

exp (− ∣20y
′
∣
2

2L2 ) if ∣x′∣ ≤ L,
exp (− ∣400((∣x

′
∣−L)2+y′2)
2L2 ) if ∣x′∣ > L,

(64)

is �rst introduced, a�er which the initial e�ective temperature is given by

χ(x, t) = χ0 + (800 K − χ0)Γ′(x cos 30○ + y sin 30○,−x sin 30○ + y cos 30○), (65)

where χ0 = 600 K. Figure 6 shows several snapshots of the e�ective temperature �eld using the
quasi-static method, where the boundary conditions are set using ζ = 104. Shear bands nucleate from
the ends of the line and grow horizontally, although they follow slightly curved paths. By t = 200ts
the region between the two shear bands has undergone a signi�cant increase in χ.
A corresponding explicit simulation was carried out and four non-dimensionalized norms

∣∣vE − vQ∣∣/UB, ∣∣σE − σQ∣∣/sY, ∣∣χE − χQ∣∣/χ∞, and ∣∣ξE − ξQ∣∣/L were evaluated at intervals 0.2ts, where
the subscripts of E and Q refer to the explicit and quasi-static simulation �elds respectively. �e
norms provide a measure of the global di�erences between the �elds, and the normalizing factors
are chosen to make the �elds in each norm approximately of order unity. Plots of the di�erences
in these �elds are shown in Fig. 7. �roughout the simulation, all �elds remain in good agreement.
�e largest discrepancies are in the initial interval from 0 ≤ t < 25ts, where all for norms exhibit
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Figure 6: Four snapshots of the e�ective temperature χ �eld for a quasi-static simulation where a line of higher χ is
initially introduced at an angle of 30○ relative to the horizontal. �e simulation parameters are speeded up by a factor of
ζ = 104 from physically realistic values. �e color gradient is the same as that used in Fig. 3.
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Figure 7: Non-dimensionalized di�erences between the simulation �elds in the quasi-static and explicit simulations of
the rotated line con�guration shown in Fig. 6, quanti�ed using the L2 norm de�ned in the text.

oscillations. �is is due to elastic waves propagating across the explicit simulation, as discussed for
Fig. 5. Once plastic deformation starts to occur at t ≈ 25ts these oscillations are damped out, and the
agreement between stresses and velocities is improved by two orders of magnitude. Beyond t = 75ts,
when the shear bands start to fully develop, all four of the norms start to increase, as small di�erences
between the two simulations build up over time.
Figure 8 shows a comparison of the norms for the cases of ζ = 104, 5×103, 2.5×103, 1.25×103. In the

interval 25ts < t < 75ts there is some limited improvement in the agreement between themethods, but
for t > 75ts, all four simulations have near-identical di�erences, suggesting that the dominant factor is
not ζ but a di�erence in the discretization. Figure 9 shows several simulations for ζ = 1.25×103, where
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Figure 8: Non-dimensionalized di�erences between the velocity and stress �elds in quasi-static and explicit simulations
of the rotated line con�guration, using four di�erent speedup factors ζ . �e L2 norm de�ned in the text is used.
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Figure 9: Non-dimensionalized di�erences between the velocity and stress �elds in quasi-static and explicit simulations
of the rotated line con�guration, for four di�erent quasi-static timestep sizes. �e L2 norm de�ned in the text is used.

the quasi-static timestep size is reduced by factors of four, sixteen, and 64, signi�cantly improving
the agreement for t > 75ts. However, the agreement for the range 25ts < t < 75ts is unchanged.
Comparisons were also carried out using the original quasi-static timestep and ζ = 104 for two larger
initial e�ective temperatures χ0 in Eq. 65. Figure 10 shows snapshots of these two simulations for
χ0 = 630 K and χ0 = 660 K at t = 200ts. For χ0 = 630 K, there is still some evidence of shear bands
nucleating from (x , y) ≈ (±0.5L,±L), although they are much weaker than in Fig. 6, and there is
also a large di�use band of higher e�ective temperature in the region ∣y∣ < 0.5L. For χ0 = 660 K the
thin shear bands are no longer visible, and instead the large di�use band dominates. Figure 11 shows
the di�erences in between the explicit and quasi-static simulations for the three di�erent values of
χ0. �e simulations for the higher χ0 are in signi�cantly closer agreement.
Taken together, Figs. 8–11 clarify the role of discretization errors in di�erences between the two
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Figure 10: Quasi-static simulation snapshots at t = 200ts for two higher initial values of e�ective temperature χ0. �e
color gradient is the same as that used in Fig. 3.

10−5

10−4

10−3

0.01

0.1

0 50 100 150 200

∣∣v
E
−v

Q
∣∣/U

B

t/ts

10−5

10−4

10−3

0.01

0.1

0 50 100 150 200

∣∣σ
E
−σ

Q
∣∣/s

Y

t/ts

600 K
630 K
660 K

Figure 11: Non-dimensionalized di�erences between the velocity and stress �elds in quasi-static and explicit simulations
of the rotated line con�guration, for three di�erent initial background e�ective temperatures χ0. �e L2 norm de�ned in
the text is used.

simulations. �e largest di�erences are caused by the presence of thin shear bands. Since these
features may propagate rapidly across the grid, a relatively small quasi-static timestep is required in
order to properly resolve them. With these results in mind, we now return to the original question
of showing an improvement in agreement between the two methods as ζ is reduced. Based on the
previous results, we examine the case of χ0 = 630 K and a quasi-static timestep of ts ζ

800 , where we
expect that the discretization errors between the two simulations will be small. Figure 12 shows the
di�erences for four values of ζ and con�rms that the di�erences are reduced for the entire duration
of the simulation as ζ is lowered. For ζ = 1.25 × 103, other than the initial elastic wave transients, the
velocity norm remains below 10−4 and the stress norm remains below 10−5 for the entire duration of
the simulation, providing con�dence that the two methods are in very close agreement.

4.3. Quasi-static simulations of physically realistic timescales
For realistic strain rates, the explicit simulation method becomes prohibitively expensive but

the quasi-static simulation method remains feasible. Here, we demonstrate this capability by
simulating an example using ζ = 1. In the previous examples considered, there is a strong ten-
dency for shear bands to form horizontally, even when a non-horizontal feature is present. Here,
we consider a case speci�cally aimed at forcing a curved shear band to form. Sixteen positions
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Figure 12: Non-dimensionalized di�erences between the velocity and stress �elds in quasi-static and explicit simulations
of the rotated line con�guration for an initial background e�ective temperature of χ0 = 630 K and a quasi-static timestep
of ζ ts
800 , for four di�erent speedup factors ζ . �e L2 norm de�ned in the text is used.

xk = ( kL
2 +

L
2 ,−

L
5 sin(

π
4 (

k
2 +

1
4))) for k = −8,−7, . . . , 7 in the shape of a sine wave are introduced, and

the e�ective temperature is initialized to be

χ(x, t) = 620 K + (180 K) exp(−20
2mink{∣x − xk ∣2}

2L2
) . (66)

Figure 13 shows a sequence of snapshots of e�ective temperature and pressure. By t = 150ts, a
sinusoidal shear band has formed that links together the initial regions of higher χ. However,
shearing along this sinusoidal band causes material to pushed towards the region of (x , y) = (0, 4L)
and be pulled away from (x , y) = (0, 0), resulting in large positive and negative pressures respectively
at these locations. By t = 300ts, a further pair of shear bands start to emerge, which become fully
developed by t = 600ts. �e additional shear bands allow the material to shear more easily and the
pressure is reduced.

5. Free boundary simulations

�e two-dimensional shearing simulations that have been considered in the previous sections
employ simple boundary conditions where the velocity is prescribed on all of the physical boundaries.
�is leads to Dirichlet boundary conditions for the elliptic problem in the projection step, which
are straightforward to implement. In this section, we extend the method to handle objects with
moving boundaries to make it applicable to more general solid mechanics problems. We focus on
the application of a traction-free condition σ ⋅ n̂ = 0 at a boundary where n̂ is an outward-pointing
normal vector.

�ere is again a close parallel with the �uid projection method, where conditions such as v ⋅ n̂ = 0
are frequently applied to enforce no normal �ow across an impermeable boundary. At the end of a
timestep, one wishes to enforce that n̂ ⋅ vn+1 = 0. Taking the inner product of Eq. 12 with n̂ yields

ρn̂ ⋅ v∗
∆t

= ∇pn+1, (67)
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Figure 13: Snapshots of e�ective temperature χ and pressure p for a quasi-static simulation with ζ = 1. �e color gradient
for the e�ective temperature is the same as that used in Fig. 3.

which is a Neumann condition in the elliptic problem for pn+1. In a case when all boundaries in a
computation are of the form v ⋅ n̂ = 0, so that the elliptic problem for pressure only employs Neumann
conditions, the pressure is only determined up to an additive constant.
Analogous steps can be taken for quasi-static elastoplasticity to apply the traction-free condition

at the end of a time step, so that n̂ ⋅ σn+1 = 0. Taking the inner product of Eq. 17 with n̂ yields

− n̂ ⋅ σ∗
∆t

= C ∶ Dn+1. (68)

�is is similar to aNeumann condition: it enforces two conditions on the gradients of the components
of v, although there is also a coupling. If a problem is considered where traction-free conditions
are applied everywhere, such as for an object freely �oating in space, then the velocity will only be
determined up to an additive vector constant. �is is physically reasonable since the original system
of equations, Eqs. 1 and 6, does not have any preferred velocity. Pinning the velocity at a single point
in a freely �oating body is enough to set the additive constant and determine the entire velocity �eld.

5.1. Boundary representation
To track the free boundary of an object we make use of the level set method [54], whereby an

auxiliary function ϕ(x, t) is introduced and is initialized to be the signed distance to the boundary,
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with the convention that ϕ(x, t) < 0 inside the simulated object and ϕ(x, t) > 0 outside the object.
�e level set method is well-suited to an Eulerian framework, since the function ϕ can be discretized
on the same Cartesian grid as other simulation �elds. It provides an implicit representation of the
boundary as the zero contour, ϕ(x, t) = 0. �e method is widely used in �uid mechanics, since it
can easily handle large stretches and topology changes in the boundary.
In principle, given an interface moving according to a globally de�ned velocity �eld v(x, t), the

function ϕ(x, t) can be updated by using the transport equation

∂ϕ
∂t

+ (v ⋅ ∇)ϕ = 0. (69)

However in practice this causes a number of numerical di�culties: while the zero contour of ϕ will
remain at the interface, the function ϕ may no longer be a signed distance function to the interface.
In addition, for the current problem the simulation �elds only exist on one side of the level set, inside
the object where ϕ(x, t) ≤ 0, and is therefore not clear what value of v to use in Eq. 69.

�ese issues have been extensively studied over the past two decades and for a full treatment the
reader should consult the books by Sethian [55] and Osher [56]. �e signed distance property can
be maintained by periodically reinitializing ϕ, such as by using a PDE-based approach [67] or by
a fast marching method [55]. Given �elds de�ned inside a body, the level set function can also be
used to extrapolate those �elds along rays normal to the interface [68], which can be used to apply
boundary conditions, or to construct a globally de�ned v in order to apply Eq. 69. For computational
e�ciency, the level set function only needs to be stored on a narrow band of grid points surrounding
ϕ(x, t) = 0.
For the examples considered here, we make use of the speci�c level set implementation that was

previously developed for simulating elastoplastic dynamics [36]. �e method employs a narrow-
banded level set for e�ciency, and makes use of a combination of a second-order fast marching
method and the modi�ed Newton–Raphson algorithm of Chopp [69]. It continually keeps the
level set function close to a signed distance function, without the need for speci�c reinitialization
operations. �e simulation �elds can be linearly extrapolated. We also make use of routines �rst
discussed in Kamrin et al. [32] that can linearly extrapolate �elds stored on a grid staggered with
respect to the level set �eld. In the examples that follow, the results are not strongly dependent on the
speci�cs of the level set implementation and we therefore refer the reader to these previous papers
for more details.

5.2. Numerical framework
�e examples considered here make use of a non-periodic grid ofM × N square cells. As in the

previous sections, the stress and e�ective temperature are stored at cell centers, while the velocity
�eld and reference map are stored at cell corners. �e level set �eld is stored at cell centers, and is
initialized to represent a shape that is attached to the boundary at one or more locations, where the
conditions

v(x, t) = 0, ξ(x, t) = x (70)

are used. �e simulation �elds are only updated at grid points that are inside the body. A cell center
(i + 1

2 , j +
1
2) is de�ned as inside the body if the level set �eld satis�es ϕi+1/2, j+1/2 < 0. A cell center

27



(i , j) is de�ned as inside the body if the bilinear interpolation of the level set �eld

ϕ′i , j =
ϕi−1/2, j−1/2 + ϕi+1/2, j−1/2 + ϕi−1/2, j+1/2 + ϕi+1/2, j+1/2

4
(71)

satis�es ϕ′i , j < 0. As described above, given a particular simulation �eld fi , j de�ned at grid points
inside the body, linearly extrapolated values f exi , j at points outside the body can be calculated. Prior to
carrying out a simulation, all �elds are extrapolated.
To carry out a timestep of ∆t in the free boundary simulations, the following procedure is used

for both the explicit and quasi-static methods:

1. Move the level set according to the velocity �eld.
2. Using the new level set values, update which points are inside the body. Initialize the simulation
�elds any new grid points inside the body to be equal to the extrapolated values.

3. Calculate the �nite-di�erence update using either the explicit method described in Subsec. 3.3
or the quasi-static method described in Subsec. 3.4, taking into account boundary conditions
at the free boundary.

4. Extrapolate all �elds.
5. Enforce the boundary conditions of Eq. 70.

Step 3 requires additional consideration for both the explicit and quasi-static methods. In the explicit
simulation, the velocity v, reference map �eld ξ, and e�ective temperature χ are unconstrained at the
free boundary. Hence, when a �nite-di�erence calculation references any exterior point, it makes use
of the available extrapolated value. �e simulation only ever makes use of the exterior points that are
directly adjacent to interior points. If an ENO calculation would reference a exterior point that is two
points away from the interior, then the simulation falls back on a �rst-order upwinded derivative.

�e stress tensor σ must be handled di�erently in order to apply the traction-free boundary
condition σ ⋅ n̂ = 0. When calculating the advective derivatives, the simulation makes use of the same
procedure as described in previous work [36], where a modi�ed extrapolated value is calculated so
that the linear interpolation of the stress �eld will satisfy the traction-free condition at the precise
location of the zero level set. In addition to this, a similar procedure must be introduced to handle
the boundary condition when evaluating the stresses in Eqs. 39 and 40 since the velocity �eld is
staggered with respect to the stress �eld. Consider updating the velocity at a grid location (i , j) and
suppose that the corner (i + 1

2 , j +
1
2) is an exterior point. �en

α =
ϕi , j

ϕi , j − ϕi+1/2, j+1/2
(72)

represents the position along the diagonal line from (i , j) to (i + 1
2 , j +

1
2) where the zero level set

intersects. At this intersected position, an interpolated stress is calculated as

σP =
(1 + α)σ i+1/2, j+1/2 + (1 − α)σ i−1/2, j−1/2

2
(73)

and a normal vector is calculated as the gradient of the bilinear interpolation of ϕ. Following previous
work [36] a new σ ′P is then constructed where the normal–normal and normal–tangential stress
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Figure 14: (a) Schematic of the basic procedure to set the velocity v at an exterior point to be consistent with the traction-
free boundary condition. �e boundary condition involves the source term b at the cell center, the normal vector n̂ at the
exterior point, and the derivatives ∂xv and ∂yv, which can be approximated by (v − vl)/h and (v − vd)/h respectively.
(b, c) Representative diagrams showing the two types of boundary conditions, which are used if n̂ lies within the range
of angles shown by the dashed arrows.

components are projected to zero. Finally, a modi�ed extrapolated value at (i + 1
2 , j +

1
2) is calculated

as
σ ′i+1/2, j+1/2 =

2σ i−1/2, j−1/2 − (1 − α)σ ′P
1 + α

, (74)

which is then used in the �nite-di�erence calculation of Eqs. 39 and 40.

5.3. Boundary implementation in the projection step
�e projection step in the quasi-static method must also be modi�ed to take into account the

free boundary. �e velocity �elds must only be solved at grid points within the body. At these points,
the linear system is constructed in the same manner as previously, using the discretization of Eqs. 57
and 58. �e discretization will also reference exterior grid points that are either orthogonally or
diagonally adjacent to an interior point—we refer to this set of outside points as neighboring points.
At the neighboring points, we also solve for the velocity in the linear system, and calculate values

that are consistent with the boundary condition in Eq. 68, which is

1
∆t

n̂ ⋅ ( −p∗ − q∗ + s∗ τ∗
τ∗ −p∗ − q∗ − s∗

)

= n̂ ⋅ ( −K′(ux + vy) − µ(ux − vy) −µ(uy + vx)
−µ(uy + vx) −K′(ux + vy) + µ(ux − vy)

) (75)

when expressed in terms of the simulation �elds. Applying this condition is similar to extrapola-
tion [68, 55, 36], in that the velocities at the neighboring points are normally extended from the
interior points in a manner that satis�es Eq. 75.
To illustrate this procedure, consider the basic example shown in Fig. 14(a), where the velocity at

the neighboring point v can be expressed in terms of the velocities at the interior points vd and vl .
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One-sided �rst derivatives of v are given by

∂v
∂x

= v − vl
h
, ∂v

∂y
= v − vd

h
. (76)

A normal vector n̂ is calculated at v. A source term b = − n̂⋅σ∗
∆t is then calculated at the center of the

square. If the two matrices

H(n̂) = 1
h
( −(K + µ)nx −µny

(µ − K)ny −µnx
) , V(n̂) = 1

h
( −µny (µ − K)nx
−µnx −(K + µ)ny

) (77)

are introduced, then Eq. 75 can be implemented as

H(n̂)(v − vl) + V(n̂)(v − vd) = b. (78)

From Fig. 14(a) it can be seen that there is some freedom in choosing the precise formula for
v. For example, the the x-derivative could be also obtained using ∂v/∂x = (vd − vdl)/h. In our
numerical tests, we found that the best results were achieved when extension formulae made use
of a combination of the available velocities that closely matched with the direction of the normal
vector. We therefore made use of two di�erent types of numerical stencils depending on whether the
normal vector pointed diagonally or orthogonally. �e stencils are chosen in such a way that their
values change continuously as the angle of the normal vector is varied.

�e �rst stencil type is shown in Fig. 14(b) and is illustrated for the case when the normal vector
points diagonally up-right so that 2n̂x > n̂y and 2n̂y > n̂x . A parameter β is de�ned as

β =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

n̂x

2n̂y
if n̂x > n̂y,

1 −
n̂y

2n̂x
if n̂x ≥ n̂y,

(79)

so that it continuously varies from 0 to 1 over the range of normal vectors considered. If α = 1 − β,
then the boundary condition is implemented as

H(n̂) [β(v − vl) + α(vd − vdl)] + V(n̂) [α(v − vd) + β(vl − vdl)]
+8βα (αV(n̂) + βH(n̂)) (v + vdl − vl − vd) = b, (80)

where the source term b is calculated at the center of the grid cell. �is formulation therefore
smoothly transitions from calculating derivatives on the bottom and right cell edges when β = 0, to
calculating derivatives on top and le� cell edges when β = 1. �e third term on the le� hand side of
the equation ampli�es the diagonal terms when the normal is close to the diagonal.

�e second stencil type is shown in Fig. 14(c) and is illustrated for cases where the normal vector
points upward, so that n̂y ≥ 2∣n̂x ∣. In this case, the parameter is given by

β = 1
2
+ n̂x

n̂y
(81)
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so that it varies from 0 to 1 over the range of normal vectors considered. If α = 1 − β, the boundary
condition is implemented as

V(n̂) [v − vd] +H(n̂) [β(vdr − vd) + α(vd − vdl)] = βbr + αbl , (82)

where bl and br are the source terms on the le� and right grid cells. By applying �ips in the x and y
axes, the two stencils shown in Figs. 14(b) and 14(c) can be extended to handle all other directions of
normal vector. As the normal vector changes, the stencil entries and the source terms that are used
all vary continuously, and there are no discontinuous jumps between the di�erent cases.

5.4. Quasi-static loading and unloading of a bar
�e �rst free boundary example makes use of a horizontal bar where the right end is �xed to a

wall. At the le� end of the bar, a load is incrementally applied on a quasi-static timescale, and is then
incrementally removed. �e load is applied in a diagonal direction so that the bar is both stretched
and deformed downward, and the magnitude of the load is large enough to cause a substantial
amount of plastic deformation around the loading region. �is leads to a complex deformation of
the bar, which makes for a good numerical test of the method. By using the reference map �eld
ξ(x, t), we also demonstrate the calculation of strain in a fully Eulerian simulation, and we examine
the interplay between deviatoric and volumetric strain.

�e example uses the domain −2L ≤ x ≤ 2L,−L ≤ y ≤ L with a 512 × 256 grid. �e level set is
initialized to represent a horizontal bar in the region x > −1.65L, ∣y∣ < 0.65L with rounded corners
of radius 0.3L, due to the di�culties of accurately representing sharp corners using the level set
method. �e bar is �xed to the boundary at x = 2L, and the initial e�ective temperature in the bar is
620 K. �e simulation lasts for 106ts, which is 4.05 s for the nominal length scale of L = 1 cm. Quasi-
static timesteps of size 1250ts are used. �e load position is given by xF(t) with initial condition
xF(0) = (−L, 0). �e load moves with the body according to

dxF
dt

= v(xF , t). (83)

�is equation is implemented using the Euler timestep, and the term v(xF , t) is calculated using
bicubic interpolation of the velocity �eld. �e load is applied as a body force F(x, t) in the projection
step, as an additional source term on the right hand side of Eqs. 57 and 58. �e time dependence of
the applied load is given by the function

FT(t) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

t
ts for 0 ≤ t < 4 × 105ts,
8 × 105 − t

ts for 4 × 105ts ≤ t < 8 × 105ts,
0 for 8 × 105ts ≤ t ≤ 106ts

(84)

so that the bar is incrementally loaded up to t = 4 × 105ts and then incrementally unloaded up to
t = 8 × 105ts. �e spatial dependence of the applied load is given by

FR(r) = { 1 + cos
πr
rF for r < rF ,

0 for r ≥ rF ,
(85)
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so that it is applied over a circle of radius rF = 0.25L. �e force is then given in terms of these two
functions as

F(x, t) = −( 12ψψ ) FR(∣x − xF ∣)FT(t), (86)

where ψ = 4.625 × 10−6sY/L.
Figure 15 shows snapshots of the pressure and deviatoric stress in the simulation. As the bar

is loaded up to t = 4 × 105ts, negative pressures build up in the bar, apart from a small region to
the le� of the applied load, where a positive pressure emerges. By t = 4 × 105ts the deviatoric stress
has exceeded sY in some areas, leading to plastic deformation. A�er the bar has been unloaded at
t = 8 × 105ts, some residual pressure and shear stress is visible as a result of the plastic deformation.
While not shown, the simulation �elds remain static over the interval 8 × 105ts < t ≤ 106ts.

�e top two plots in Fig. 16 show the e�ective temperature at the time of maximum load, and at
the time when the load is removed. As would be expected from the regions of high deviatoric stress
at t = 4 × 105ts, regions of increased χ are visible around the loading region, and also at the top right
corner, where a small shear band forms. While the bulk of the increased χ occurs during the period
of increasing load, a small increase in χ is also visible during the period of decreasing load—this is
expected since the plastic deformation will not immediately cease when the load starts to decrease.
Figure 16 also shows plots of the deviatoric strain measured in terms of the ∣E0∣, and the volume

ratio detF, which are computed using the reference map �eld ξ(x, t). We use detF − 1 to measure
the volumetric strain. As expected, there is a high correlation between the deviatoric strain and the
regions of higher χ, since χ increases in regions where the material has yielded plastically, and the
plastic deformation only has a deviatoric component. At the point of maximum load, the correlation
is moderately high, since ∣E0∣ will be a combination of both plastic strain, and elastic strain due to
the stresses. Once the load is removed, the correlation is very high, since the ∣E0∣ is almost entirely
determined in terms of plastic strain. At both timepoints, the volumetric strain is closely correlated
with pressure, since there is no volumetric plastic strain. �e volumetric strain at t = 8 × 105ts is due
to the residual pressure in the bar.
Since the majority of the load is applied horizontally, the amount that the bar stretches can be

compared to an analytic estimate based on a uniaxial extension test. Let Ω be the region where the
load is applied. �e total horizontal force per unit length is

F̄x(t) = ∫Ω 12ψFR(∣x − xF ∣)FT(t)d2x = 12ψFT(t)2π ∫ rF

0
FR(r)r dr

= 24ψπ (
r2F(π2 − 4)
2π2

) FT(t) =
12ψr2F(π2 − 4)

π
FT(t)

= 6.48 × 10−6FT(t)sYL = 55.1FT(t) N/m (87)

and hence the maximum load at t = 4 × 105ts is 2.59sYL or 22.0 MN/m.
In the plane strain con�guration, the e�ective Young’s modulus is given by E′ = E/(1 − υ2). �e

loading point xF(t) is initially 3L from the �xed wall and the bar has width 1.3L. Hence the expected
extension as a function of time is

∆xF(t) =
F̄x(t)3L
1.3LE′

= FT(t)1.10 × 10−7L. (88)
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Figure 15: Plots of pressure p (le�) and deviatoric stress ∣σ0∣ (right) at �ve time points of the stretched bar simulation.
�e boundary of the bar is shown as the solid white line obtained as the zero contour of level set function ϕ. �e thin
dashed white lines are the contours of the components of the reference map ξ and show how the material is deformed.
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Figure 17 shows a plot of the horizontal loading position over time in the simulation, compared to
this analytic estimate. �e two curves are in reasonable agreement, although the gradient of the
curve close to t = 0 has a slightly larger magnitude in the simulation. �is is expected, since in
the simulation the load is localized in a small central region of the bar, rather than being spread
across the whole bar. �is is con�rmed by the plots ∣σ0∣ in Fig. 17, which show relatively low levels
of stress at the edges of the bar over the range −L < x < −0.5L. To con�rm that this is the source
of the discrepancy, a second simulation was carried out where the diameter of the loading region
was doubled to rF = 0.5L while keeping the total load the same. As expected, the extension in this
simulation is in closer agreement with the analytic estimate.

�e plastic deformation of the bar is also evident in Fig. 17. As t approaches 4 × 105ts, the rate
extension of the loading point noticeably increases. A�er the load is removed at t = 8 × 105ts, the
loading point does not fully return to its original position. Both simulation curves show the same
trends although less plastic deformation is evident in the curve for rF = 0.5L, since by spreading out
the load, and hence stress, smaller regions of the bar will deform plastically.

5.5. Transition from the quasi-static simulation to the explicit simulation
Since the explicit and quasi-static timestepping methods make use of the same grids and �elds,

they can be intermixed, making it possible to simulate processes with disparate time scales. In a recent
paper [57], we considered one such situation of dynamic crack propagation, where a bulk metallic
glass was loaded on a time scale of seconds and �rst accumulates rather slow plastic deformation,
but then fractures on a time scale of nanoseconds. Here, we consider another case, where a bar is
loaded on a quasi-static timescale and then the load is instantaneously released, making the bar
rapidly oscillate. �e simulation domain is ∣x∣ ≤ 0.5L, ∣y∣ ≤ L using a 512 × 1024 grid. �e level set
function is initialized to be a vertical bar in the region ∣x∣ < 0.25L with four holes of radius 0.15L at
x = ±0.8L,±0.4L and y = 0. �e bar is attached to the top and bottom boundaries, and the initial
e�ective temperature is 620 K. �e loading position xF is initially located at the origin. �e temporal
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and spatial dependencies of the force are given by

FT(t) = {
t
ts for 0 ≤ t ≤ tR,
0 for 5 × 105 < ts ≤ tR + 10ts,

FR(r) = { 1 + cos
πr
rF for r < rF ,

0 for r ≥ rF ,
(89)

where tR = 5 × 105ts and rF = 0.15L. �e total force is then given by

F(x, t) = ( −ψFR(∣x − xF ∣)FT(t)
0 ) , (90)

where ψ = 5 × 10−6sY/L. �e simulation �rst uses quasi-static timesteps of size 625ts to simulate
the time interval 0 ≤ t ≤ tR. At t = tR, the load reaches its maximum value of 0.105sY/L, which is
0.893 MN/m in the nominal physical units. When the load is removed, the simulation switches over
to explicit timesteps to simulate up to t = tR + 10ts.
Figures 18 and 19 show snapshots of the pressure and deviatoric stress respectively for this

simulation. In both �gures, the top row shows snapshots during the quasi-static loading process. As
expected, in the middle of the bar, negative pressures grow on the le� of the bar as it is stretched, and
positive pressures grow on the right of the bar as it is compressed. �e largest deviatoric stresses
develop in the small regions between each pair of holes at x = (0,± L

2 ), and also at edges of the bar
close to the top and bottom boundaries. In both of these regions, ∣σ0∣ exceeds sY and hence plastic
deformation takes place.
In Figs. 18 and 19 the bottom row of snapshots show the bar at several points a�er the load has

been released. As soon as the load is released, elastic waves rapidly propagate through the bar, and
the stress imbalance pushes the bar rightward. Figs. 18(d) and 19(d) show the bar when it �rst reaches
an approximately vertical state. Some small concentrations of pressures and deviatoric stress are
visible in the regions that underwent plastic deformation. In Fig. 18(e) and 19(e), the bar is shown at
its maximal rightward extent. Very large deviatoric stresses are visible in the regions between each
pair of holes. A�er this timepoint, the bar begins to move le�ward. Fig. 18(f) and 19(f) show the bar
when it becomes vertical for the second time.
Figure 20 shows the e�ective temperature in this simulation at three time points. At t = tR, as

expected, an increase e�ective temperature is visible in the regions between the holes, and near the
top and bottom boundaries. At t = tR + 10ts, a�er the bar has undergone the rapid oscillatory motion,
further increases in χ are visible in the regions between the holes. Because the oscillatary motion
creates large deviatoric stresses up to 1.9sY, and the plasticity model speci�ed in Eqs. 31 and 34 has an
exponential dependence on ∣σ0∣, noticeable plastic deformation can occur on a very short timescale.
�is is a consequence of the simpli�ed choice of the plasticity model discussed in Subsec. 3.2.

�e loading phase and release phase di�er by more than four orders of magnitude in duration,
and this example therefore highlights the ability to simulate phenomena across a wide range of
timescales. It may also be possible to carry out an opposite transition from an explicit simulation to a
quasi-static simulation, although this would require careful consideration of any elastic waves in the
explicit simulation, which would immediately disappear a�er a single quasi-static projection step.
In the free boundary examples presented here and in the previous subsection, it has been possible
to determine a priori whether the quasi-static method or the explicit method should be applied,
but this may not be the case in general, particularly since in an elastoplastic material the relevant
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Figure 18: Plots of pressure p for the load–release simulation. �e top three snapshots are of the loading process simulated
with the quasi-static method, at times of (a) t = 0, (b) t = 2.5 × 105 ts , and (c) t = tR = 5 × 105 ts . �e bottom three
snapshots show the dynamics of the bar a�er the load is instaneously removed, simulated with the explicit method, at
times of (d) t = tR + 2.5ts , (e) t = tR + 5ts , and (f) t = tR + 7.5ts . �e boundary of the bar is shown as the solid white line
obtained as the zero contour of level set function ϕ. �e thin dashed white lines are the contours of the components of
the reference map ξ and show how the material is deformed. For plots (a) to (c), the dashed cyan circle shows the region
where the bar is loaded.
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timescales may dynamically change. In Fig. 17, the loading position starts to move more quickly near
the time of maximum load, due to the positive feedback between e�ective temperature andDpl, and
for larger loads, the motion may become so great that quasi-staticity may no longer be a reasonable
assumption. We expect that this can be quanti�ed by examining the size of the projection required to
restore quasi-staticity, creating the possibility of automatically selecting the correct time-integration
method to use, although we leave this for the subject of future work.

6. Conclusion

Building on a mathematical correspondence with the incompressible Navier–Stokes equations,
we have developed a numerical method for simulating the deformation of elastoplastic materials
in the quasi-static limit that is analogous to the projection method in �uid mechanics [1]. �e new
method is most suitable for materials that can be well-described by the additive decomposition
of the deformation rate into elastic and plastic parts. It is well-suited for a large class of materials
(e.g. metals and amorphous solids such as metallic glasses), which typically undergo small elastic
deformations and feature large elastic wave-speeds, making many plastic deformation problems
intrinsically quasi-static. In such situations, the new method allows simulating realistic loading rates,
which would be prohibitively computationally expensive using explicit methods.

�e method is naturally implemented in an Eulerian framework. It is particularly well-suited to
cases of straightforward boundary conditions, such as the simple shear experiments discussed in
Section 4. We examined several basic features of shear band development in the STZ plasticity model,
but the method could be adapted to look at a wide variety of problems in elastoplasticity, using STZ
plasticity or other plasticity models. For example, detailed questions of shear band nucleation and
growth, shear band interaction, or the role of structural inhomogeneities can be examined, and will
be addressed elsewhere. Models with more complex physics, such as a coupling to real temperature
evolving according to the di�usion equation, are also straightforward to incorporate. �e derivation
of the method should also be generalizable to the case of a non-constant and anisotropic sti�ness
tensor C, and other objective stress rates, such as the Truesdell or Oldroyd stress rates.
As described in Section 5, the method can also be applied to problems involving moving free

boundaries by using a suitable description of the boundary, such as the level set method. �is
framework may be well-suited to various �uid–structure interaction problems, o�ering some of the
same advantages as the Eulerian hyperelasticity methods [27, 28, 26, 30, 32]. It may be interesting
to examine the case of a quasi-static elastoplastic material interacting with an incompressible �uid,
which would require a double projection to enforce both �uid incompressiblity and solid quasi-
staticity. As demonstrated in the �nal example in Subsec. 5.5, the method can also be intermixed
with explicit timestepping, making it possible to simulate phenomena on multiple timescales.

�e method presented here is underpinned by a close mathematical connection between the vari-
ables (p, v) in the incompressible Navier–Stokes equations and (v, σ) in quasi-static elastoplasticity.
�is connection may therefore allow mathematical results for �uid mechanics to be translated to
elastoplasticity. �e incompressible limit of �uid mechanics has been extensively analyzed, o�en
by examining the limit of small Mach number M, describing the ratio of a typical velocity to the
sound speed, and playing a similar role to the arti�cial compressibility parameter [59]. Klainerman
and Majda established that the solutions of the incompressible Navier–Stokes equations will match
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Figure 19: Plots of deviatoric stress ∣σ0∣ for the load–release simulation. �e top three snapshots are of the loading process
simulated with the quasi-static method, at times of (a) t = 0, (b) t = 2.5 × 105 ts , and (c) t = tR = 5 × 105 ts . �e bottom
three snapshots show the dynamics of the bar a�er the load is instaneously removed, simulated with the explicit method,
at times of (d) t = tR + 2.5ts , (e) t = tR + 5ts , and (f) t = tR + 7.5ts . �e boundary of the bar is shown as the solid white
line obtained as the zero contour of level set function ϕ. �e thin dashed white lines are the contours of the components
of the reference map ξ and show how the material is deformed. For plots (a) to (c), the dashed cyan circle shows the
region where the bar is loaded.
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the compressible Navier–Stokes equations in the limit of smallM [70]. In the context of turbulent
combustion, where the Navier–Stokes equations are coupled to a reaction–di�usion equation, the
zero Mach number limit has been examined by introducing perturbative expansions of the �elds in
powers ofM [71, 72]. �esemathematical approaches provide possible avenues to establish rigorously
that, in the long timescale limit, solutions to the full elastoplastic system will match the elastoplastic
system with the quasi-staticity constraint.
A variety of advanced numerical approaches based on the �uid projection method have been

developed, and it may be possible to translate these to elastoplasticity. Currently, the projection step
that we employ is �rst-order accurate, but it is likely that high-order �uid projection methods [73,
74, 75, 76] could be adapted to the elastoplastic framework. �e �uid projection step has also been
implemented using �nite elements within a �nite-di�erence calculation [77, 25], which has the
advantage of simplifying boundary conditions, and may provide a simpler solution for quasi-static
elastoplasticity than the extrapolation formulae introduced in Subsec. 5.3. �e �uid projection
method has also been implemented on adaptive resolution grids [78], and if this was applied to
elastoplasticity, it would allow for the investigation of the detailed structure of the localized shear
bands that are a common feature of plasticity models. All of these interesting possibilities and
directions should be systematically explored in future investigations.
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Appendix A. Uniqueness of solution to the algebraic problem in Eq. 18

In the quasi-static projection method, it is necessary to solve the algebraic problem given in
Eq. 18, which can be rewritten as

∇ ⋅ σ∗ = −∆t∇ ⋅ (C ∶ ∇vn+1) (A.1)

by taking into account the symmetries of C. Suppose that this equation must be solved on a �xed
domain Ω where Dirichlet conditions for velocity are prescribed on the boundary ∂Ω. Suppose that
a second solution v′n+1 exists. Hence the function w = v′n+1 − vn+1 satis�es

0 = ∇ ⋅ (C ∶ ∇w) (A.2)

in Ω, and w = 0 on ∂Ω. Multiplying the right hand side of Eq. A.2 and integrating gives

0 = ∫Ωw ⋅ (∇ ⋅ (C ∶ ∇w))d3x = ∫∂Ω n̂ ⋅ (w ⋅ (C ∶ ∇w))dS − ∫Ω(∇w) ∶ (C ∶ (∇w))d3x. (A.3)

�e boundary integral will vanish since w = 0 there, and hence

0 = ∫Ω(∇w) ∶ C ∶ (∇w)d3x. (A.4)

Since C is positive de�nite, it follows that ∇w = 0 and therefore w is a constant. Assuming ∂Ω ≠ ∅,
the boundary condition will enforce that w = 0, and hence that v′n+1 = vn+1 so that Eq. 18 has a unique
solution.
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�e above argument will also apply for traction-free boundary conditions discussed in Section 5.
Equation 68 will lead to a Neumann-like condition C ∶ ∇w = 0, which will also lead to the boundary
term in Eq. A.3 vanishing. In the case when only traction-free boundary conditions are applied, w
will be a constant, so that v′n+1 and vn+1 are equal up to a constant, which as discussed in Section 5 is
physically reasonable.

Appendix B. Adaptive sub-stepping

As described in Subsec. 3.3, the plastic deformation Dpl grows rapidly when s̄ > sY, and this can
cause the forward Euler timestepping procedure to lose accuracy, so that in a single timestep of size
∆t, the change ∆s̄ in the deviatoric stress may be very large and signi�cantly overshoot the yield
surface. To solve this, an adaptive timestepping procedure is used that considers the coupled system
of s̄ and χ over the timestep ∆t, in isolation from other terms. �e procedure divides the interval ∆t
into a number of substeps so that the change ∆s̄ at each substep remains within a �xed tolerance η;
throughout this study, a value of η = 1% is used. To begin, the values of deviatoric stress and e�ective
temperature at a given gridpoint are stored as s̄0 and χ0 respectively. �e following algorithm is then
used:

α = 0
tR = ∆t
Q = true
while Q do
Evaluate D′ = 2µDpl(s̄α , χα)/sY
Evaluate F = F(s̄α , χα)
if D′tR > η then

tS ← η/D′

tR ← tR − tS
else

tS ← tR
Q ← false

end if
s̄α+1 ← s̄α − tSD′ s̄α
χα+1 ← χα + tSF
α ← α + 1

end while
Here, a le� arrow is used to signify a variable being updated. Within the algorithm, the variable tR
holds the remaining portion of the time interval to be considered. In the main loop, the algorithm
determines whether the value of ∆s̄ for a timestep of size tR is within the threshold η. If so, the
algorithm takes a timestep of size tR and terminates. Otherwise, it steps forward by the time interval
tS that makes ∆s̄ exactly match the threshold; it then subtracts tS from tR and repeats. Once the
algorithm has terminated, corrected versions of plastic deformation and e�ective temperature change
are evaluated according to

D̃pl =
(s̄0 − s̄α)sY
2µs̄0 ∆t

, F̃ =
χα − χ0
∆t

. (B.1)
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�ese values are then used within the main �nite-di�erence updates given in Eqs. 42 to 44 for
the explicit simulation and Eqs. 50 to 52 for the quasi-static simulation. If η is su�ciently large or
∆t is su�ciently small, so that the algorithm always terminates a�er a single step, then the main
�nite-di�erence updates reduce to the standard, �xed-timestep forward Euler procedure.
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[10] E. Kröner, Allgemeine kontinuumstheorie der versetzungen und eigenspannungen, Archive for
Rational Mechanics and Analysis 4 (1) (1959) 273–334. doi:10.1007/BF00281393.

[11] E. H. Lee, Elastic–plastic deformation at �nite strains, Journal of Applied Mechanics 36 (1)
(1969) 1–6. doi:10.1115/1.3564580.

[12] L. Anand, C. Su, A theory for amorphous viscoplastic materials undergoing �nite deformations,
with application to metallic glasses, Journal of the Mechanics and Physics of Solids 53 (6) (2005)
1362–1396. doi:10.1016/j.jmps.2004.12.006.

43

http://dx.doi.org/10.1090/S0025-5718-1968-0242392-2
http://dx.doi.org/10.1016/0749-6419(89)90027-2
http://dx.doi.org/10.1126/science.1081042
http://dx.doi.org/10.1126/science.1081042
http://dx.doi.org/10.1073/pnas.1219153110
http://dx.doi.org/10.1073/pnas.1219153110
http://dx.doi.org/10.1063/1.124471
http://dx.doi.org/10.1016/S1359-6454(01)00263-4
http://dx.doi.org/10.1007/s00707-005-0282-7
http://dx.doi.org/10.1007/BF00281393
http://dx.doi.org/10.1115/1.3564580
http://dx.doi.org/10.1016/j.jmps.2004.12.006


[13] C. Su, L. Anand, Plane strain indentation of a zr-basedmetallic glass: Experiments and numerical
simulation, Acta Materialia 54 (1) (2006) 179 – 189. doi:10.1016/j.actamat.2005.08.040.

[14] P.�amburaja, R. Ekambaram, Coupled thermo-mechanical modelling of bulk-metallic glasses:
�eory, �nite-element simulations and experimental veri�cation, Journal of the Mechanics and
Physics of Solids 55 (6) (2007) 1236–1273. doi:10.1016/j.jmps.2006.11.008.

[15] C. Reina, S. Conti, Kinematic description of crystal plasticity in the �nite kinematic framework:
A micromechanical understanding of F = FeFp, Journal of the Mechanics and Physics of Solids
67 (2014) 40–61. doi:10.1016/j.jmps.2014.01.014.

[16] C. Truesdell, Hypo-elasticity, Indiana Univ. Math. J. 4 (1955) 83–133.

[17] R. Hill, A general theory of uniqueness and stability in elastic–plastic solids, Journal of the Me-
chanics and Physics of Solids 6 (3) (1958) 236–249. doi:10.1016/0022-5096(58)90029-2.

[18] W. Prager, An elementary discussion of de�nitions of stress rate, Quart. Appl. Math. 18 (1960)
403–407.

[19] J. C. Nagtegaal, J. E. De Jong, Some computational aspects of elastic–plastic large strain analysis,
International Journal for Numerical Methods in Engineering 17 (1) (1981) 15–41. doi:10.1002/
nme.1620170103.

[20] J. Dienes, On the analysis of rotation and stress rate in deforming bodies, Acta Mechanica 32 (4)
(1979) 217–232. doi:10.1007/BF01379008.
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[62] J. S. Langer, Shear-transformation-zone theory of plastic deformation near the glass transition,
Phys. Rev. E 77 (2) (2008) 021502. doi:10.1103/PhysRevE.77.021502.

[63] E. Bouchbinder, J. S. Langer, Nonequilibrium thermodynamics of driven amorphous materials.
II. E�ective-temperature theory, Phys. Rev. E 80 (3) (2009) 031132. doi:10.1103/PhysRevE.
80.031132.

[64] M. L. Manning, J. S. Langer, J. M. Carlson, Strain localization in a shear transformation zone
model for amorphous solids, Phys. Rev. E 76 (5) (2007) 056106. doi:10.1103/PhysRevE.76.
056106.

[65] M. L. Manning, E. G. Daub, J. S. Langer, J. M. Carlson, Rate-dependent shear bands in a
shear-transformation-zone model of amorphous solids, Phys. Rev. E 79 (1) (2009) 016110. doi:
10.1103/PhysRevE.79.016110.

47

http://dx.doi.org/10.1016/S0022-5096(01)00115-6
http://dx.doi.org/10.1016/S0022-5096(01)00115-6
http://dx.doi.org/10.1016/j.actamat.2006.11.027
http://dx.doi.org/10.1016/j.actamat.2006.11.027
http://dx.doi.org/10.1016/0021-9991(88)90002-2
http://dx.doi.org/10.1016/0021-9991(88)90002-2
http://dx.doi.org/10.1103/PhysRevLett.109.194301
http://dx.doi.org/10.1115/1.3408976
http://dx.doi.org/10.1115/1.3408976
http://dx.doi.org/10.1016/0021-9991(67)90037-X
http://dx.doi.org/10.1103/PhysRevE.77.021502
http://dx.doi.org/10.1103/PhysRevE.80.031132
http://dx.doi.org/10.1103/PhysRevE.80.031132
http://dx.doi.org/10.1103/PhysRevE.76.056106
http://dx.doi.org/10.1103/PhysRevE.76.056106
http://dx.doi.org/10.1103/PhysRevE.79.016110
http://dx.doi.org/10.1103/PhysRevE.79.016110


[66] C.-W. Shu, S. Osher, E�cient implementation of essentially non-oscillatory shock-capturing
schemes, J. Comp. Phys. 77 (2) (1988) 439–471. doi:10.1016/0021-9991(88)90177-5.

[67] M. Sussman, P. Smereka, S. J. Osher, A level set method for computing solutions to incompress-
ible two-phase �ow, J. Comp. Phys. 114 (1) (1994) 146–159. doi:10.1006/jcph.1994.1155.

[68] T. D. Aslam, A partial di�erential equation approach to multidimensional extrapolation, J.
Comp. Phys. 193 (1) (2004) 349–355. doi:10.1016/j.jcp.2003.08.001.

[69] D. L. Chopp, Some improvements of the fast marching method, SIAM Journal on Scienti�c
Computing 23 (1) (2001) 230–244. doi:10.1137/S106482750037617X.

[70] S. Klainerman, A. Majda, Compressible and incompressible �uids, Communications on Pure
and Applied Mathematics 35 (5) (1982) 629–651. doi:10.1002/cpa.3160350503.

[71] A. Majda, J. A. Sethian, �e derivation and numerical solution of the equations for zero Mach
number combustion, Combustion Science and Technology 42 (3–4) (1985) 185–205. doi:

10.1080/00102208508960376.

[72] P. Embid, Well-posedness of the nonlinear equations for zero Mach number combustion,
Communications in Partial Di�erential Equations 12 (11) (1987) 1227–1283. doi:10.1080/
03605308708820526.

[73] J. B. Bell, P. Colella, H. M. Glaz, A second-order projection method for the incompressible
Navier–Stokes equations, Journal of Computational Physics 85 (2) (1989) 257–283. doi:10.
1016/0021-9991(89)90151-4.

[74] J. B. Bell, D. L. Marcus, A second-order projection method for variable-density �ows, Journal
of Computational Physics 101 (2) (1992) 334–348. doi:10.1016/0021-9991(92)90011-M.

[75] E. G. Puckett, A. S. Almgren, J. B. Bell, D. L.Marcus,W. J. Rider, A high-order projectionmethod
for tracking �uid interfaces in variable density incompressible �ows, Journal of Computational
Physics 130 (2) (1997) 269–282. doi:10.1006/jcph.1996.5590.

[76] D. L. Brown, R. Cortez, M. L. Minion, Accurate projection methods for the incompressible
Navier–Stokes equations, Journal of Computational Physics 168 (2) (2001) 464–499. doi:

10.1006/jcph.2001.6715.

[77] A. Almgren, J. Bell, W. Szymczak, A numerical method for the incompressible Navier–Stokes
equations based on an approximate projection, SIAM Journal on Scienti�c Computing 17 (2)
(1996) 358–369. doi:10.1137/S1064827593244213.

[78] C. Min, F. Gibou, A second order accurate projection method for the incompressible Navier–
Stokes equations on non-graded adaptive grids, Journal of Computational Physics 219 (2) (2006)
912–929. doi:10.1016/j.jcp.2006.07.019.

48

http://dx.doi.org/10.1016/0021-9991(88)90177-5
http://dx.doi.org/10.1006/jcph.1994.1155
http://dx.doi.org/10.1016/j.jcp.2003.08.001
http://dx.doi.org/10.1137/S106482750037617X
http://dx.doi.org/10.1002/cpa.3160350503
http://dx.doi.org/10.1080/00102208508960376
http://dx.doi.org/10.1080/00102208508960376
http://dx.doi.org/10.1080/03605308708820526
http://dx.doi.org/10.1080/03605308708820526
http://dx.doi.org/10.1016/0021-9991(89)90151-4
http://dx.doi.org/10.1016/0021-9991(89)90151-4
http://dx.doi.org/10.1016/0021-9991(92)90011-M
http://dx.doi.org/10.1006/jcph.1996.5590
http://dx.doi.org/10.1006/jcph.2001.6715
http://dx.doi.org/10.1006/jcph.2001.6715
http://dx.doi.org/10.1137/S1064827593244213
http://dx.doi.org/10.1016/j.jcp.2006.07.019

	1 Introduction
	2 Theoretical development
	2.1 An elastoplastic material model
	2.2 Review of the projection method for the incompressible Navier–Stokes equations
	2.3 A projection method for quasi-static elastoplasticity

	3 A numerical implementation
	3.1 Kinematics and elasticity
	3.2 Plasticity
	3.3 Numerical methods for explicit simulations
	3.4 Numerical methods for quasi-static simulations

	4 Shearing between two parallel plates
	4.1 Comparison of explicit and quasi-static methods
	4.2 Quantitative comparison of the explicit and quasi-static simulation methods
	4.3 Quasi-static simulations of physically realistic timescales

	5 Free boundary simulations
	5.1 Boundary representation
	5.2 Numerical framework
	5.3 Boundary implementation in the projection step
	5.4 Quasi-static loading and unloading of a bar
	5.5 Transition from the quasi-static simulation to the explicit simulation

	6 Conclusion
	Appendix A Uniqueness of solution to the algebraic problem in Eq. 18
	Appendix B Adaptive sub-stepping

